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and b33 of -1"54, 0"62 and 0-92 A 2 respectiveiy (final 
values were -1 .42,  0.39 and 1.03/~2). Treatment of 
anisotropy in this way made difference maps less 
noisy and this facilitated the further interpretation of 
the structure. 
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Abstract 

The generalized density function that is the Fourier 
transform of X-ray diffraction as observed when 
anomalous scattering occurs is described. This is a 
complex function in contrast to the purely real elec- 
tron-density function that pertains when only the 
'normal '  Thomson scattering component is present. 
The imaginary component of this general density 
function produces an image of the anomalous scatter- 
ing centers and is more accurate than the Kraut 
approximation commonly used in macromolecular 
crystallography to produce such images. 

Introduction 

The Fourier transform of the electron-density distri- 
bution in an atom yields the normal atomic scattering 
factor for X-rays. Conversely, a Fourier synthesis of 
the structure factors from a crystal composed of such 
normal scatterers gives back the true electron-density 

* Present address: Laboratory of Molecular Biology, Building 
2, Room 408, National Institute of Diabetes, Digestive and Kidney 
Diseases, Bethesda, MD 20892, USA. 

function, p(x). This 'normal '  situation pertains if the 
scattering from each point is directly proportional to 
that from a free electron. In reality, the scattering 
process can involve resonance with the natural 
frequencies of bound electrons and this leads to addi- 
tional phase-shifted contributions - the anomalous 
scattering (James, 1948). A Fourier synthesis of the 
structure factors from a crystal that includes 
anomalous scatterers does not produce the true elec- 
tron-density distribution, which is real and non-nega- 
tive, but by analogy we can define a general density 
function, p*(x), as the Fourier transform of the actual 
X-ray diffraction rather than just the normal scatter- 
ing component. This function is complex and the 
imaginary component depends only on the anom- 
alous scattering centers. The Bijvoet-difference 
Fourier synthesis proposed by Kraut (1968), a func- 
tion which has proved useful in macromolecular 
crystallography, is an approximation of the true 
imaginary component (Chacko & Srinivasan, 1970). 
In this paper we examine the properties of the general 
density function, test approximations with simulated 
diffracted data, and discuss applications with experi- 
mental data. 
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Theoretical analysis 

The atomic scattering factor can be written as 

f=fo+f,+ if", (1) 

where fo  is the normal scattering factor and f '  and 
f"  are respectively the real and imaginary components 
of the anomalous scattering. If we designate by 
F°(h) = IF°(h)lexp[i~p°(h)] the structure factor for 
reflection h that corresponds to the normal scattering 
contributions, then the true electron-density function 
is 

p(x)=(1/V) ~ F°(h) exp ( - 2 7 r i h . x )  
- -OO 

CO 

= ( E / V )  Y'. F°(h) cos[~p°(h)-Err ih .x] ,  (2) 
0 

where x is a fractional position in the unit cell of 
volume V.t The analogous general density function 
is then 

o o  

p*(x)=(1/V) ~, F ( h ) e x p ( - 2 7 r i h . x ) ,  (3) 
- - C O  

where F(h) is the total structure factor. F(h) com- 
prises contributions of F'(h) from the real com- 
ponents of scattering (fo+f,) and of F"(h) from the 
imaginary components (/f"). Thus 

F(h)--F'(h)+F"(h). (4) 

Furthermore, F ' ( - h )  = F'(h)lex p [ -  iq~'(h)] and 
F"( -h)  --I F"(h)l exp { - i[ ~p"(h) + 7r]}. [Note that IF"I 
and ~" compare respectively to ~ and ~ + t o  in an 
earlier nomenclature (Hendrickson, 1979).] After 
replacement of F(h) by (4), (3) reduces to 

c O  

p*(x)=(2/V) ~'. F'(h)l cos [~p'(h)-27rh.x ] 
0 

+(2i/V)~ F"(h) ls in[ ,p"(h)-2~rh.x] .  (5) 
0 

This result bears superficial resemblance to a density 
equation stated by Okaya & Pepinsky (1956), but the 
coefficients in their formulation are not correct. 

It is clear from (5) that Ira(p*) obtains exclusively 
from the anomalous scattering centers, and that in 
the absence of anomalous scattering F = F'= F ° and 
(5) reduces to (2). However, this formulation is not 
particularly useful as F '  and F" are not readily evalu- 
ated separately from experimental measurements. 

The general density function can also be expressed 
in terms of the actual structure factors, F(h). Follow- 
ing Kraut (1968), we define 

~ - ½[~p(h) - ~(-- h)] (6) 

oo t The symbol ~o here signifies a summation of h over zero and 
positive values of the indices h, k and l with half weight assigned 
to the F(000) term. 

and in addition introduce 

Aq~ ---- ½[ ~p(h) + ~ ( - h ) ] .  (7) 

Thus, ~ ( h ) = ~ + A q ~  and ~ p ( - h ) = - f f + A ~ .  Upon 
substitution into (3), 

p*(x) = 
lOO 
-~o [ F(h)]+ F ( - h )  ] cos &p cos ( f f - 2 7 r h . x )  

- ~ E  ° [IF(h) - I F ( - h )  ] sin Aq~ sin ( f f - 2 r r h .  x) 

+ - -  V ~  ° [IF(h) - I F ( - h )  ] cos A~p sin ( f f - 2 7 r h . x )  

+-~ liE( h)l + I F ( -  h)l] sin A~ cos (~ - 2 ~'h. x). 
u 

(8) 

At the level of approximation that A~ -~ 0, (8) yields 
the Bijvoet-difference Fourier synthesis (Kraut, 1968) 

Im[p*(x)]~-(1/V) ~.[ F ( h ) l -  ]F ( -h ) l ]  
0 

x sin (g, - 2 ~ h .  x). (9) 

This computationally useful formulation of the 
general density function, equation (8), can also be 
derived directly from the formulation which is based 
on atomic origins of the scattering, equation (5). From 
definitions pertaining to the components of (4) it 
follows that 2 F ' ( h ) =  F ( h ) + F * ( - h )  and that 
2F"(h) = F(h) - F*( - h). Substitution of these values 
into the generating function for (5) gives a formula- 
tion that corresponds to that of Chacko & Srinivasan 
(1970). (This function also follows from basic 
attributes of complex functions.) Expansion with 
reference to phase definitions (6) and (7) then 
yields (8). 

Tests with simulated data 

The Bijvoet-difference Fourier synthesis, equation 
(9), is frequently used to locate anomalous scattering 
centers in macromolecules and to choose the correct 
enantiomorph for a structure. Since this function is 
shown here to be an approximation, it is of interest 
to check its validity as a representation of the structure 
of anomalous scatterers. Chacko & Srinivasan (1970) 
have reported such calculations for a small molecule 
structure. Here we report quantitative comparisons 
for a typical macromolecular problem. We have gen- 
erated simulated data from an atomic model of 
myohemerythrin to make these tests. Myohemeryth- 
rin is a dimeric-iron protein of 118 amino-acid 
residues that crystallizes with one molecule in the 
asymmetric unit of space group P212121 (Hendrick- 
son, Klippenstein & Ward, 1975). Model XVIII.3, 
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Table 1. Density function comparisons from simulated 
anomalous scattering in diffraction data from 

myohemerythrin 

Density at atomic positions 

Kraut 
Atom B AFcosA~o Psinzl~o Im(p*) (1968) 

Fe 1 8.2 153.4 212.8 366-2 150-7 
Fe 2 7.7 167.7 231.6 399.3 165.8 
Cys35Sy 10-6 21.8 32.4 54.2 21.6 
Met61S8 21.7 15.6 27.6 43.2 16.1 
Met62S8 13-4 18.8 38.9 57.7 18.0 
Met76S8 23.4 14.7 27.5 42.3 14.0 
Cys99Sy 13.6 19.8 33.8 53.6 19-0 
R.m.s. density 2.8 2.9 1-7 2.8 

value 

which had been refined to R =0.166 against the 
experimental observations to spacings of 1.3/~ along 
b and 1.7/~ along a and e, was used in these tests. It 
has 1164 atoms including 162 waters and two azide 
ions in the solvent and five residues modeled as 
disordered. Overall anisotropic thermal factor incre- 
ments were used in the refinements (Sheriff & Hen- 
drickson, 1987a) and individual isotropic thermal 
factors were refined. These same parameters were 
carded over to the simulation. Anomalous scattering 
factors o f f " =  3.204, 0.557 and 0.0 were used for Fe, 
S and all others, respectively. The calculation was 
made for the 7175 structure factors at 2/~ resolution 
for which the observed data have IFI > 4o'F. 

Four different Fourier syntheses were compared: 
(1) Im (p*) from equation (8); (2) the AF cos (A~) 
component of Im (p*); (3) the 2F sin (A~) com- 
ponent of Im(p*);  and (4) the Kraut function, 
equation (9). Results are tabulated in Table 1. The 
Bijvoet-difference synthesis of Kraut is a very good 
approximation of the AF cos (A~) component, as can 
be expected from the small difference anglesof (A~) = 
6.4 ° in this case. However, the neglected 2F sin (A~) 
component actually contributes even more to the true 
imaginary density function than does the AF cos (A/p) 
component. Thus, the Kraut function accounts for 
less than half of the total peak density in the Im (p*) 
function. Relative to the r.m.s, level, the maxima are 
down by more than a factor of four. But despite 
variations in signal-to-noise ratios, the top seven 
peaks in all four syntheses correspond to atomic 
positions of anomalous scatterers. The positions of 
these peaks are within 0.1/~ of the true sites in the 
Im (p*) synthesis and within 0.3/~ in the Kraut 
function. 

It is to be expected that the validity of the approxi- 
mation will depend on the strength of anomalous 
scattering. To examine this question, we have simu- 
lated hypothetical structures in which the iron atoms 
are replaced by sulfur or samarium. The results are 
shown in Table 2. As expected, Bijvoet differences 
(both magnitude and phase) increase on average as 
S, Fe and Sm respectively are used at the iron sites 

Table 2. Effects of main-site replacement in 
myohemerythrin simulations of anomalous diffraction 

Fe as S Fe as Fe Fe as Sm 

f"(Fe site) (e) 0.577 3.204 12.320 
R.m.s. (A ~o) (°) 1-9 6.4 23.1 
R.m.s. (AF)/r.m.s. (F) 0.012 0-041 0.131 
Average distance from S site to nearest peak (/~) 
True Im (p*) 0.06 0.07 0.14 
Kraut approx. 0.08 0.14 1.37 
Average density at Fe sites 
True Im (p*) 66.4 382.7 1472.4 
Kraut approx. 27.8 158.3 481.2 
Average density at S sites 
True Im (p*) 50.9 50.2 47.8 
Kraut approx. 21.4 17.7 -5.0 
R.m.s. density 
True Im (p*) 0.5 1.7 6.2 
Kraut approx. 0.8 2.8 10.2 

in these myohemerythrin simulations. Also, as it must, 
the true imaginary component of the general density 
function faithfully reproduces the anomalous scat- 
terer structure in all cases. Discrepancies that do exist 
(e.g. imperfect location and variation in average 
density at sulfur sites) arise from series termination 
and computational truncation effects. However, the 
Kraut approximation becomes less valid as the 
strength of anomalous scattering increases. When Sm 
replaces Fe the peaks nearest to true sulfur positions 
are off by 1-4A on average and these peaks rank 

0 
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c 
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Fig. 1. Section through a plane defined by Met62SS, Cys35Sy and 
Fe 1 (unlabeled cross) from maps using phases from S as C 
model. Also shown is site Cys99Sy which lies 0.45 A above 
plane. Maps are contoured at intervals of l tr starting at 2tr, 
where tr is the r.m.s, density of  the map upon exclusion of the 
iron sites. (a) Ira(p*) Fourier map, r.m.s, density is 
0-0352 e A,-3; (b) Kraut Bijvoet-difference Fourier map, r.m.s. 
density is 0.0354 e A, -3. 
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Table 3. Density functions based on experimental mag- 
nitudes and on phases from the refined atomic model 

of myohemerythrin 

Density at peak nearest atomic site* 

Kraut (1968) Im (p*) 

Atom S as S S as Ct S as S S as Ct 
Fe 1 36.1 (2) 35.5 (2) 91.9 (2) 92.2 (2) 
Fe2  37.6(1) 37.4(1) 96.4(1) 97.5(1) 
Cys35S3, 4.6 (3) 5.0 (3) 12.6 (4) 5.4 (3) 
Met61S8 3.6 (14) 3.4 (23) 9.9 (6) 4.7 (5) 
Met62St5 3-3 (28) 3-7 (12) 12.8 (3) 5.2 (4) 
Met76S8 2.6 (145) 2.9 (86) 8.6 (7) 2.9 (83) 
Cys99S~, 4.1 (6) 4.7 (4) 11.9 (5) 4.6 (6) 
Solvent 3-9 (7) 3.2 (25) 
Solvent 2-3 (303) 3-0 (38) 
Average 2.0 (514) 2. l (393) 

solvent* 

* Peak density values are given in units of standard deviations as defined 
by the r.m.s, density value of the map, which upon excluding the iron sites 
was approximately 0.035 e A, -3 for all four maps. The rank ordering of 
peaks, excluding ripples around the iron atoms, is cited in parentheses. 

t In S as S calculations the structure factors were calculated from a model 
that included sulfur atoms in the cysteine and methionine side chains, but 
not in any solvent positions. In S as C calculations carbon scattering factors 
were used for all sulfur atomic sites. 

* Density values for 'average solvent' sites are averages, over all solvent 
sites, of the densities at the highest peaks within I A, of these sites. Rank is 
the average rank for these highest peaks. 

from 76 to 572 in the asymmetric unit. Moreover, the 
density at true positions is actually negative in four 
of the five cases. 

Applications with experimental data 

Practical use of the imaginary Fourier synthesis of 
course requires that phases as well as magnitudes be 
known for the Friedel mates. These data, particularly 
the a~p(h) values, may not be readily available in 
some cases such as in conventional isomorphous 
replacement phasing. However, if anomalous scatter- 
ing has been used in the phase determination, then 
the  necessary values can be extracted. Moreover, in 
the~-~vent that a refined structure is already available, 
then both q~(h) and ~p(-h) are readily evaluated and 
Im (19") can be computed. This function can be useful 
for identifying the sites of relatively minor anomalous 
scattering centres. 

Results of an application to the refined 
myohemerythrin structure are reported in Table 3. 
The observed diffraction magnitudes were used 
together with phases calculated from refined model 
XVIII.3 ( R = 0 . 1 6 6 )  in these syntheses at 2.03, 
resolution (Sheriff & Hendrickson, 1987b). The 
densities from Im (19"), (8), and from the Kraut 
approximation (9) are compared with both sulfur and 
carbon scattering factors used at the sulfur sites in 
the protein model. In all cases the dominant iron sites 
are strongly represented. However, the weaker sulfur 
sites are appreciably stronger on average in the 
Im (19") maps than in the Kraut maps. Inclusion of 

the 2 F  sin A~p terms does introduce a bias toward the 
anomalous scattering centers included in the phase 
calculations, but even when this bias is removed in 
the sulfur-as-carbon model the Im (p*) function is 
superior. Comparative sections are shown in Fig. 1. 
These maps were useful in confirming that the first 
cysteine is at position 35 rather than at 34 as indicated 
by the original chemical sequence and that two of 
the solvent sites were occupied by sulfate ions (Sheriff 
& Hendrickson, 1987b). 

Although normal procedures for phase determina- 
tion based on anomalous scatterers do not separately 
evaluate ~p(h) and q~(-h) these can readily be extrac- 
ted if the structure of the dominant anomalous scat- 
terers is known. It follows from (4) that 

¢(h)  = t a n _ l ( I F '  sin ~ '+IF"I  sin ~"~ 
F '  cos q~'+ F" cos ~7,] (10) 

~ ( - h )  = t a n - t (  -- I-F'-I sin ¢ ' +  IF"! sin ~o"~ 
I F'l cos ~'-IF"l cos ~" 1" (11) 

In the case of  resolved anomalous phasing or isomor- 
phous replacement phasing for structures containing 
anomalous scatterers, one typically evaluates phases 
for the average of Friedel mates which give q~' to 
good approximation (Hendrickson, Smith & Sheriff, 
1985) since also from (4) F ( h ) + F * ( - h ) =  
21F'(h) ] exp [i~'(h)].  From structure factor calcula- 
tions based on refined anomalous scatterer positions, 
I F"l and ~p" can be calculated. Then, since from (4) 

F '  =½(F(h )  2+ F ( - h )  2 - 2 F " )  1/2, (12) 

all parameters needed in (10) and (11) are known. 
Comparable evaluations can be made in the case of 
phasing based on multiple wavelength measurements. 

In conclusion, the ' imaginary Fourier synthesis' 
can be a useful function for selectively producing 
images of anomalous scattering centers. It can be 
used to special advantage for finding the positions of 
minor anomalous centers when the sites of the more 
dominant anomalous scatterers are known and have 
been used to evaluate approximate phases. The posi- 
tions of minor anomalous scatterers such as sulfur 
atoms can be useful landmarks in macromolecular 
chain tracing and in distinguishing bound solvent 
ions from water molecules. 
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Abstract 

A computer-based symmetry algebra is described 
which permits the reconstruction of an infinite bond 
network from the asymmetric connectivity without 
an a priori knowledge of atomic coordinates. The 
algebra requires not only an algorithmic ordering of 
the Wyckoff groups but the designation of one site 
in each Wyckoff group as a special-position rep- 
resentative (SPR) site. The algebra is designed to be 
used for analysing the bonding network of com- 
pounds appearing in the Inorganic Crystal Structure 
Database. 

Introduction 

With the advent of crystal structure databases, com- 
puters are now used for the systematic examination 
of the structures of large numbers of related com- 
pounds. The program S l N D B A D  (Altermatt & 
Brown, 1985) has been used to calculate the bond 
vectors in the asymmetric unit from the atomic co- 
ordinates obtained from the Inorganic Crystal Struc- 
ture Database (Bergerhoff, Hundt, Sievers & Brown, 
1983). A systematic application of S I N D B A D  to 
entries stored in this database has resulted in the 
creation of a file (BONDFILE) containing the asym- 
metric bond sets of several thousand compounds. To 
expand the asymmetric set of bonds into the full 
bonding network requires the application of the sym- 
metry operations of the appropriate space group. This 
can be done by computer, provided that proper care 
is taken in treating the bonds formed by atoms on 
special positions. This paper describes an algebra for 
doing this which, inter alia, requires an algorithm for 

* Present address: CIBA-GEIGY AG, Basel, Messtechnik+ 
Automation, R-1055.3.20, CH-4002 Basel, Switzerland. 

ordering the special positions and their representative 
sites. 

Expansion of an asymmetric bond set 

The BONDFILE contains the asymmetric set of bond 
vectors, each bond being identified by its two terminal 
atoms. Because of space limitations the atomic co- 
ordinates are not stored in the file. The asymmetric 
set of bond vectors is expanded into the full bond 
network by generating all the bonds around each of 
the terminal atoms of the network in turn. Each atom 
is identified by an index indicating which symmetry 
operator and which lattice vector is used to generate 
it from the given atom in the asymmetric unit. This 
index consists of five numbers, the first referring to 
an ordered list of atoms in the asymmetric unit, the 
second to an ordered list of symmetry operators, and 
the last three numbers to the lattice translation vector. 
The ordered list of symmetry operators could be a 
list of Seitz matrices which is stored explicitly in the 
BONDFILE,  but we have found it more convenient 
to regenerate this list as required from the space-group 
symbol. Several programs are available to do this. 
The older ones interpret the Hermann-Mauguin sym- 
bol but recently new space-group symbols have been 
proposed (Hall, 1981; Shmueli, 1984) that are 
specifically designed to avoid the setting ambiguities 
inherent in the Hermann-Mauguin symbol. We have 
chosen to use the Hall (1981) symbol and the ordering 
of symmetry operators produced by the program 
S G N A M E  in X T A L  (Stewart & Hall, 1983). This 
ordering is symbol dependent (it is even different for 
different symbols describing the same space-group 
setting), but since the Hall symbol that was used to 
generate the asymmetric set of bonds is the one stored 
in the BONDFILE,  the program can always recon- 
struct the ordered list of symmetry operators 
appropriate to the problem. 
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